On equality of absolute central and class preserving automorphisms of finite $p$-groups
نویسنده
چکیده مقاله:
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^n (nleq 5)$, for which every absolute central automorphism is class preserving.
منابع مشابه
A Note on Absolute Central Automorphisms of Finite $p$-Groups
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
متن کاملCLASS PRESERVING AUTOMORPHISMS OF FINITE p-GROUPS
We classify all finite p-groups G for which |Autc(G)| attains its maximum value, where Autc(G) denotes the group of all class preserving automorphisms of G.
متن کاملCLASS-PRESERVING AUTOMORPHISMS OF A FAMILY OF FINITE p-GROUPS
Let G be a finite p-group, p prime such that G has a normal subgroup H , there exists an element y ∈ G, y / ∈ H such that order of y is p, y ∈ ζ(G) and each element g ∈ G can be written as g = h y, h ∈ H, 1 ≤ i ≤ p, where ζ(G) denotes the center of G. It is proved that any τ ∈ Autc(G) such that for all x ∈ H , xτ = (uy)x(uy), where u is a fixed element of H and 1 ≤ i ≤ p is an inner automorphis...
متن کاملON AUTOMORPHISMS OF SOME FINITE p-GROUPS
We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups o...
متن کاملClass Preserving Automorphisms of Blackburn Groups
In this article, a Blackburn group refers to a finite non-Dedekind group for which the intersection of all nonnormal subgroups is not the trivial subgroup. By completing the arguments of M. Hertweck, we show that all conjugacy class preserving automorphisms of Blackburn groups are inner automorphisms. 2000 Mathematics subject classification: primary 20D45; secondary 16S34.
متن کاملAutomorphisms of P-groups of Maximal Class
Juhász has proved that the automorphism group of a group G of maximal class of order p, with p ≥ 5 and n > p + 1, has order divisible by p. We show that by translating the problem in terms of derivations, the result can be deduced from the case where G is metabelian. Here one can use a general result of Caranti and Scoppola concerning automorphisms of two-generator, nilpotent metabelian groups.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 147- 155
تاریخ انتشار 2019-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023